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Abstract

This report describes a method to discriminate different ISO/MPEG 1
Audio Layer-3 (MP3) encoding programs by statistical characteristics of
the compressed audio files. Encoders are classified according to 10 statisti-
cal features by a Näıve Bayes Classifier, which can be induced from a set of
test data. A classification experiment led to a success rate of 96 % correct
classifications. The authors discuss all features and refer to possible lim-
itations of feature selection. In addition, empirical evidence showed that
a pre-classification of MP3 encoders increases the reliability of detection
methods for steganographic content. The proposed scheme reduced the
error rate of an attack against mp3stego from about 75% false positives
to 15 % misses. Implications for the generalisability to other file formats,
and contributions for related applications are also addressed.
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1 Introduction

The invention of the ISO/MPEG 1 Audio Layer-3 (MP3) audio compression al-
gorithm [7, 14] is probably one of the most remarkable and far-reaching develop-
ments in the area of digital media processing. The MP3 format enables compres-
sion rates of about 1/10 of the size of uncompressed digital audio while degrading
the audible quality only marginally. Together with the moderate complexity of
the compression algorithm—software implementations of MP3 coders/decoders
(codecs) with acceptable performance even on low budget home computers soon
became available—the format simplified the interchange of music and resulted
in worldwide popularity for its users and sleepless nights for the music industry.
The popularity of the format fostered demand for encoding tools and opened a
market for a variety of programs for different needs. Today we count hundreds
of MP3 encoder front-ends based on several dozens of encoding engines ranging
from proof of concept hacks to targeted products either tuned for high speed, or
optimised to costly and flexible tools for professional studio requirements.

Given these facts, the MP3 format became an interesting carrier for stegano-
graphically hidden data. Steganography, which is somewhat linked with cryptog-
raphy, aims to conceal the very existence of a confidential message by hiding it
imperceptibly within other, less suspicious data [21]. MP3 is a promising carrier
format for steganography in three ways. At first, the popularity of the format is
an advantage, because exchanging common and widely used types of data is less
conspicuous to an observer. For example, sharing an MP3 file over the Internet
is a completely common task and doing so is a plausible form of communica-
tion. Second, MP3 files are typically between 2 and 4 megabytes (MB) in size
and thus are larger than other commonly used formats (e. g., text documents
or photographs as e-mail attachments). All forms of information hiding suffer
from a small proportion of payload compared to the total amount of informa-
tion, which is necessary to cover the message. So, larger file sizes simplify the
handling of medium-sized payloads (e. g., a text message or a photograph). The
inconveniences that come with splitting up messages over different carriers can
be almost avoided for MP3 files. Third, the nature of the lossy MP3 compression
itself makes it attractive for steganographic use. The information loss that is a
concomitant of the encoding process creates a certain amount of unpredictability
that can be exploited to carry hidden information securely.

Compared to the suitability of MP3 files for steganography, the amount of
known steganographic tools for this format is still quite limited. MP3Stego [22]
is based on the 8hz-mp3 encoder [1] and hides message bits in the parity of block
length. Although this procedure is limited to a very low capacity, it is (under
certain conditions, see below) detectable [26]. The attack is based on the analysis
of statistical properties, i. e., the variance of block lengths in the MP3 stream.
Stego-Lame [24] pursues another approach and embeds into uncompressed Pulse
Code Modulation (PCM) audio data. The amount of information is so small
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and the embedding procedure so carefully selected, that a subsequent lossy MP3
compression does not erase the hidden information. This tool is still in an experi-
mental stage. An appropriate attack is delivered in the same bundle. In addition
to these publicly known stego-tools we expect some more being used in the wild.
Although the complexity of MP3 compression exceeds those of typical stegano-
graphic tools (e. g., LSB image embedding), the availability of commented source
codes for MP3 encoders facilitates the composition of derivates with stegano-
graphic extensions. Hence, advances in the detection of steganographic data in
MP3 files are relevant.

The experience with the existing attack against MP3Stego shows that the
detection procedure can distinguish MP3 files with and without steganographic
content quite reliably if they are encoded with either MP3Stego or its underlying
encoding engine [1]. However, files from other encoders tend to have similar sta-
tistical properties as steganograms from MP3Stego and thus are identified as false
positives. Hence, the reliability of the detection algorithm heavily depends on
the prior knowledge about the encoder of a particular file. While this situation
might be sufficient for an academic attack or proof of concept, it is definitely not
optimal for real world applications. In the fieldwork, we usually cannot expect
any prior knowledge about the source of an arbitrary MP3 file. We therefore
present a procedure to determine the encoder of MP3 files on the basis of sta-
tistical features that are typical for a certain implementation of the MP3 format
specification. The insertion of a preclassification of MP3 encoders allows a stegan-
alyst to run the appropriate detection algorithm for the determined encoder and
thus dramatically decrease the amount of false positives. Thus it is believed that
statistical classification of MP3 encoders can increase the reliability of detection
procedures.

The rest of this report is organised as follows. In the next section we briefly
review the relevant particularities of the MP3 format that are analysed for the
extraction of statistical features. Section 3 sums up the project realisation and
describes the main steps to follow the presented procedures. The features them-
selves are explained in Section 4. Experimental results that back the performance
of the proposed scheme are presented in Section 5, before we discuss further ap-
plications and possible generalisations to other file formats in Section 6.
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2 Analysis of MP3 Specification

The purpose of this section is not to repeat the architecture and specification of
MP3 compression [2, 14], but to give a brief overview of those principles that are
relevant as features for our proposed statistical classification. Hence, we focus on
the latitudes that are left in the ISO specification, which leave space for different
implementations. It is the vaguely defined particularities that finally lead to
different output streams for the same input data.

2.1 Principles of MP3 Compression

The developers of MP3 audio compression included several techniques to max-
imise the relationship between perceived audio quality and storage volume. In
contrast to previous schemes, they designed a two-track approach. On the first
track, the audio information is split up into 32 equally spaced frequency sub-
bands. These components are separately mapped into the time domain with a
Modified Discrete Cosine Transformation (MDCT). The following quantisation
step reduces the precision of the MDCT coefficients. As a last step, a lossless en-
tropy encoding of the quantised coefficients leads to the compact representation
of MP3 audio data. The second track is very important for the performance of
MP3 encoding, because it is used as a control track. Also starting from the PCM
input data, a 1024-point Fourier transformation is used to fit the local frequency
spectrum as input to a psycho-acoustic model. This model emulates the particu-
larities of human auditory perception and derives appropriate masking functions
for the input signal. The model is used to control the choice of block types and
quantisation factors in the first track. Hence, this two-track approach adaptively
finds an optimal trade-off between data reduction and audible degradation for a
given input signal.

Regarding the underlying data format, an MP3 stream consists of a series of
frames. Synchronisation tags separate frames from other information sharing the
same transmission or storage stream (e. g., video frames). For a given bit rate, all
MP3 frames have a fixed compressed size and represent a fixed amount of 1152
PCM samples. Usually, an MP3 frame contains 32 bits of header information, an
optional 16 bit Cyclic Redundancy Check (CRC) checksum, and two granules of
compressed audio data. Each granule can be subdivided into one (mono) or two
(stereo) blocks. Since the actual block size depends on the amount of information
that is required to describe the input signal, it may vary between frames. To
match the floating block sizes with the fixed frame sizes without wasting band-
width, the MP3 standard introduces a so-called reservoir mechanism. Frames
that do not use their full capacity are filled up (partly) with block data of sub-
sequent frames. This method assures that local highly dynamic sections in the
input stream can be stored with over-average precision, while less demanding
sections allocate under-average space. However, the extent of reservoir usage is
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limited in order to decrease the interdependencies between more distant frames
and to facilitate resynchronisation in the middle of a stream.

2.2 Level of Analysis and Related Work

In order to perform a statistical characterisation of MP3 encoders we have to
find differences in the encoding process. These differences may have multiple
causes. At the first glance, all loosely defined parameters in the specification are
subject to different interpretations. However, the standard precisely describes a
large set of critical parameters including the exact coefficients for the filter bank
and threshold values for the psycho-acoustic model. Nevertheless, some imple-
mentations seem to vary or fine tune these parameters. In addition, performance
evaluations may have led to sloppy implementations of the standard, such as
shortcuts in the inner quantisation loop or the choice of non-optimal Huffman
tables. Also, a number of parameter defaults for meta information are up to
the implementor (e. g., the Serial Copy Management System (SCMS) flags, also
known as protection bit [11]). All these variations together cause particular fea-
tures in the output stream that are indications of a specific encoder and therefore
are subject to a detailed analysis.

Table 1: Structure of ISO/MPEG 1 Audio Layer-3 encoding process

Transformation Layer Modelling Layer Bit Stream Layer

Functionality

– Filter bank – Quantisation loop – Auxiliary data

– MDCT transform – Model decisions – Frame header bits

– FFT transform – Table selection – Checksums

– Stream formatting

Points for analysis

– Frequency range – Size control – Surface information

– Filter noise – Model decisions – SCMS protection bit

– Audible artefacts – Capability usage – SCMS original bit

To structure the occurrences of implementation specific particularities in the
MP3 encoding process, we will subdivide the process into three layers as shown in
Table 1. The transformation layer includes all “passive” operations that directly
affect the audio data, namely the filter bank, and the MDCT and Fast Fourier
(FFT) time to frequency transformations, respectively. In this layer, variations



2 ANALYSIS OF MP3 SPECIFICATION 9

in the filter coefficients or in the precision of the floating point operations may
cause measurable features such as typical frequency ranges or additional noise
components.

We define all “active” components of the compression algorithm as part of
the modelling layer. These sub-processes are less close to the underlying audio
data and mainly perform the trade-off between size and quality of the compressed
data. In this layer, encoder differences basically occur in three ways:

1. Calculation of size control quantities, e. g., whether net or gross file sizes
are used as reference for the bit rate control.

2. Model decisions: Different threshold values lead to different marginal dis-
tributions of control parameters over the data stream.

3. Capability usage: Some encoders do not support all compression modes
specified in the MP3 standard.

The uppermost layer, which we call bit stream layer, handles the formatting of
already compressed MP3 frames into a valid bit stream. These operations include
the composition of frame headers, the optional calculation of CRC checksums for
error detection, and the insertion of meta data. For instance, quasi-standardised
ID3 tags [15] contain information about the names of artists, interprets, and pub-
lishers of audio files. Optional VBR (variable bit rate) headers store additional
data evaluated by some MP3 players to display valid progress bars and enable
efficient skipping within MP3 files with variable bit rate.1 The existence of a
certain kind of meta information and its default values may be used as indicator
for the encoding program.

EncSpot [5], the only tool for MP3 encoder detection we know, relies on the
deterministic surface parameters of the bit stream layer. As these parameters are
easily accessible, it is also simple to erase or change their values and therefore
trick this kind of encoder detection. Therefore we decided to use statistical fea-
tures related with deeper structures of the encoder and thus are more difficult
to manipulate. Our initial experiments with parameters of the transformation
layer showed that those tend to be dependent on the type of audio data actually
encoded. For example, it is impossible to measure encoder characteristics, such
as the upper frequency bound, if the encoded audio material does not use the full
range. Also, artefacts occur at typical envelopes or frequency changes that do
not appear similarly in all kinds of music. Hence, we decided to focus our level
of analysis to the modelling layer, which promises to deliver the most robust
features in terms of source data independency and difficulty of manipulation.

1As MP3 has been specified for constant bit rates (CBR) the majority of MP3 files are
encoded as CBR with one of the predefined rates. However, some encoding programs optionally
encode each frame with a different bit rate (out of the predefines rates), thus enabling variable
bit rate (VBR) streams with MP3.
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2.3 Scope and Terminology

To precisely describe the nature of used features we introduce some formal no-
tations. We denote a medium m as m0 for the source (i. e., uncompressed) rep-
resentation and as mi = ei(m0) if it is encoded with encoding program ei. ei is
element of the set of n encoders E = {e1, e2, . . . , en}. We write the set of all files
encoded using ei as Mi = ei(M0), where M0 is the set of all uncompressed source
media.

The function f(m) extracts a symbolic feature x from m. The vector of k
different features

x = f(m) = (f1(m), f2(m), . . . , fk(m))

is called feature vector. The components of the feature vector x are selected to be
as similar as possible for different media m ∈ Mi encoded with the same encoder
ei, and also as dissimilar as possible for all encoded media m ∈ {ej(m0)|j 6= i}
that are derived from m0 by encoding it with other encoders. Therefore the
information about the characteristics of the encoding program is consolidated in
the value of x.

Classifiers are algorithms which automatically classify an object, i. e., assign
it according to its features to one of several predefined classes. As the litera-
ture contains multiple options, the choice of a specific algorithm for our purpose
was determined by the conditions given in our application. Fisher Linear Dis-
criminant (FLD) methods and Support Vector Machines (SVM) have already
been successfully applied for steganalysis [18, 8]. These methods perform well for
numeric (i. e., continuous) features, but are less suitable for symbolic features.
Hence, we chose to apply a classifier which is based on Bayesian logic [17]. As
we will show in Section 5, we get notable results with the simple Näıve Bayes
Classifier (NBC) [4].2

We use a classifier c to establish the relation between a specific instantiation of
x = f(mi) and the encoding program ei that was used to create mi. If we do not
have any knowledge about the encoder, we can only derive probabilistic evidence
about this assignment. For a given medium m a classifier tries to compute the
conditional probabilities

P (ei|f(m)) = P (ei|x1 = f1(m), x2 = f2(m), . . . , xk = fk(m)),

with 1 ≤ i ≤ n, and then selects the most probable encoder ei, so that

P (ei|f(m)) > P (ej|f(m)), ∀ ej ∈ E\{ei}, i = c(f(m)).

2These results are coherent with the findings from a comprehensive evaluation of different
classifiers: Compared to a set of complex classification models, the simple NBC performed
equal or superior for many realistic decision problems [16].
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The classifier’s performance depends on its parameterisation, which can be
induced from data. Therefore we assemble a training set

T = {(i, ei(m))|1 ≤ i ≤ n ∧m ∈ M0}.

Each element of T contains a compressed representation of medium m and a
reference to the known encoding program. We note a classifier trained with the
training set T as cT . The encoder prediction of a specific instantiation of x, and of
an underlying medium m will be denoted as cT (x) and cT (f(m)), respectively. To
evaluate the quality of the classification, we regard the proportion p of correctly
classified cases when the classifier is run on elements of a test set S, which is
composed similarly to the training set T :

p(c, S) =
|{(i, mi) ∈ S|i = c(f(mi))}|

|S|

As a weak form of reliability evaluation, the same training set T can be
reclassified, thus cT (f(mi)) with (i, mi) ∈ T . A somewhat stronger measure can
be achieved for disjoint test and training sets, so that S ∩ T = ∅.
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3 Procedure

The CHAMP3 Project was accomplished between June 2003 and March 2004
at Technische Universität Dresden, Germany. It has been organised into three
main tasks. First, we accomplished preparatory tasks such as the development of
analytical tools for MP3 files (cf. Section 3.2) and the set-up of a test database of
MP3 files from different encoders. The encoder selection process and the obstacles
we faced are described in Section 3.1. Second, analytical research was conducted
to find distinguishing features between different encoders. This task is difficult
to describe because of its iterative and explorative nature. It was mainly driven
by systematic comparisons of the most promising parameters of MP3 files. The
third task included further tests, the implementation of a prototype, and final
documentation. The resulting sources and binaries are attached to this report
and a brief tutorial of how to use the provided software is given in Appendix A.2.

3.1 Set-up of Test Database

To arrange a training set for our experiments, we had to collect the most im-
portant MP3 encoders. The search was oriented to well-known names, such as
Fraunhofer or Xing, as well as to general advices from bulletin boards on the
Internet. To complete our collection, we used the file names of archives as search
terms in Google to get references to similar content, which turned out to contain
further encoders.

We installed and examined several dozen MP3 encoders; however, we realised
that most of them rely on the same back-end and simply differ in their user
interfaces. The back-ends we found are mainly l3enc by Fraunhofer, lame, and
bladeenc. While bladeenc and l3enc essentially appeared in one version, lame
came in several builds from varying compilers and with different file names.

Some MP3 encoders provide the user with a large number of adjustable pa-
rameters. For instance, lame leaves dozens of independent choices for noise
shaping, psycho-acoustic algorithms, filters, and bit rate (constant, average, and
variable), thus offering several thousand possible combinations. Moreover, open-
source tools in particular are frequently updated and new releases can have very
minor changes. Since there are hardly any parameters supported by all MP3
encoders, we created the MP3 files for our database using the respective default
parameters. The bit rate is the only parameter we varied. We used the bit rates
112 kbps, 128 kbps, and 192 kbps, which we believe to be the most commonly
used ones. We back this assumption with evidence from an online user survey
at http://www.mp3-tech.org/, and by counting several collections of MP3 files.
The results are documented in Table 2. With some exceptions (l3enc, mp3comp,
shine), the selected rates are supported by all other encoders.

The ideal audio content for our database would be a representative selection
of music, either drawn from the set of commercially available recordings or sam-

http://www.mp3-tech.org/
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Table 2: Share of bit rates of MP3 files

Bit rate Estimated proportion

Poll on MP3tech.org MP3 collections

(February 2003) (about 20K files)

320 kbps 8.0% 0.2%

224–256 kbps 7.2% 0.4%

160–192 kbps 27.0% 12.9%

128 kbps 22.6% 69.5%

112 kbps 1.0% 4.9%

64–96 kbps 3.0% 9.3%

up to 56 kbps 7.1% 2.4%

other 24.1% 0.4%

100 % 100 %

pled from Peer-to-Peer (P2P) file sharing systems. However, we tried to find a
compromise between an extensive database and a limited set-up time. So we had
to limit the search in some respects according to our resources. For instance, we
did not examine any hardware MP3 encoder.

It is desirable to have an automated set-up process for the database so that
additional audio sources, encoders, or encoder settings can later be added with
minor effort. This is a challenging task, because the encoders run on different
platforms (Linux, DOS, MacOS, and Windows). For the test database, most
encoders were called from shell scripts under Linux. A large part of the Windows
and DOS software even runs under Linux with emulation software, such as wine
[27] and dosemu [3]. To assure that these rather atypical application environments
do not influence the resulting MP3 files, we compared the binary files with those
from native platforms. Nonetheless, the remaining tools not working with one
of the available emulations had to be run manually on the respective original
platforms.

Windows encoders use so-called Audio Compression Manager (ACM) mod-
ules. These ACM libraries are stored in the Windows system directory. If Win-
dows encoders use different ACM modules with identical file names, they mutu-
ally overwrite each other. Be aware that an encoder installed under Windows
sometimes produces MP3 files with different properties after another encoder has
been installed. Hence, it is advisable to install each encoder in its own Windows
installation (e. g., under VMware [25]). Furthermore, many Windows encoders we
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found on the Internet are silently bundled with spyware.3

3.2 Tool Development

The R Project for Statistical Computing [23, 12] is a powerful language for data
analysis and graphics, which comes with a wide variety of specific statistical func-
tions. As it is released as free and open source software, it is highly extensible.
We chose this technology as environment for the analytical parts of CHAMP3.
However, we had to develop additional import functions to access statistical fea-
tures of MP3 files directly. Our implementation of the interface library is based on
mpglib [9], which is released under the Lesser General Public License (LGPL)
[6]. The new function load.mp3 returns an mp3info structure representing a
given input MP3 file.

According to the prior explanation of the MP3 file format structure, we de-
signed a data structure to map MP3 files into R objects. It is a convention that R
functions store complex data structures in so-called list objects. The members
of a list are accessible either by name—like associative arrays—or by number.
The mp3info structure contains up to four nested lists, one for each data parsing
level:

• global: a list of file specific information

• frames: a data frame object holding the header parameters for each frame

• blocks: a data frame object holding information for every block; for stereo
files, two adjacent entries represent one granule

• coeff: a data frame object holding the 576 quantised MDCT coefficients
for each block

The exact structure of the mp3info object, including all relevant attributes,
is depicted in Figure 1. As the R representation of MP3 objects allocates a
multiple of the file length of an MP3 file in memory, the load.mp3 function is
highly configurable. This enables the user to extract only the information which
he or she actually needs for a certain analytical task. For example, since none of
the features we use for the classification requires the exact coefficient values (as
already mentioned, we do not use characteristics of the transformation layer), we
do not need to import the coefficient data at all.

3Spyware, sometimes called spybots or tracking software, is a technology to secretly gather
information about the user and relay it to advertisers or other interested parties.



3 PROCEDURE 15

MP3 Object

global frame block coeff a

- filename
- length
- id3.length
- aid.length

- length
- size
- header
- bitrate
- freq
| - stereob

| - jsbound
| - single
| - lfs
| - mpeg25
| - header.change
| - layer
| - crc
| - bitrate.index
| - freq.index
| - padding
| - ext
| - mode
| - mode.ext
| - copyright
| - original
| - emphasis

- part23.length
- big.values
- count1.values
- stereo
- gain.0
- gain.1
- gain.2
- gain.pow2
- table.0
- table.1
- table.2
- region.1
- region.2
- block.type
- mixed.flag
- compress.scale
- scale

- mdct:1
- mdct:2
- mdct:3
...
...
- mdct:575
- mdct:576

Figure 1: Structure of MP3 file as R object

aload.mp3() returns the following flags only if expand.flags=TRUE is specified.
bThe coeff data frame is only included if the parameter coeff is explicitly set.
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4 Description of Features

As a result of iterative comparisons and analyses of MP3 encoder differences, we
discovered a set of 10 features in the modelling layer. For a structured presenta-
tion, the features are assigned to categories, which will be discussed separately
in the following subsections.

4.1 Calculation of Size Control Quantities

Distinct encoders seem to differ in the way the target bit rate is calculated, as
we discovered measurable differences in the effective bit rate. According to the
MP3 standard, each block can be encoded with one of 14 predefined bit rates.4

However, because of the difficulty to reach an exact compressed size, these act just
as guiding numbers. Some encoders treat these rates as an upper limit, others as
an average. Also, the encoders differ in the scope of frames that are evaluated as
control parameters for the compression loop. If broader scopes are used, or fixed
headers at the beginning of MP3 files are also reflected in the quantisation loop,
then the effective bit rate varies with the file length and converges to a target
value with an increasing number of frames.

4.1.1 Feature 1: Effective Bit Rate Ratio

These phenomena are depicted in Figure 2 for four selected encoders on the basis
of files with a nominal bit rate of 128 kbps. The curves are drawn according
to a least square estimate with a linear and a hyperbolic term over measured
data points.5 The effective bit rates βeff of 8hz-mp3 and mp3comp depend on the
number of frames r, while there is no influence for files encoded with lame or
fhgprod. We calculate the effective bit rate as

βeff =
[(filesize)− (junkbytes)− (meta information)] · 8 · ϕ

1152 · r
,

with ϕ = 44.1 kHz as sampling frequency. Even for large files we observe a
measurable difference in the marginal βeff between all four encoders. To derive a
bit rate independent feature from this observation, we calculate a criteria %1 as
ratio between the effective bit rate βeff and the nominal bit rate βnom:

%1 =
βeff

βnom

, with βnom =
1

r

r∑
i=1

β(i)
nom,

where β(i)
nom is the nominal bit rate given in the header of the i-th frame. To map

4Bit rates for Layer-3 in kbps: 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320
5R2 values range between 0.83 and 0.97.
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Figure 2: Relation between effective bit rate and file length for selected encoders

this ratio to a symbolic feature x1, we define the extraction function f1 as follows:

x1 = f1(m) =


0 for %1 < 1− 1 · 10−4

1 for 1− 1 · 10−4 ≤ %1 ≤ 1
2 for 1 < %1 ≤ 1 + 5 · 10−6

3 else.

The number of levels and the exact boundaries for this feature, as well as
for the following ones, are determined by an iterative process of comparing a set
of test audio files. We report the functions which lead to the best experimental
results, even though further optimisation is still possible.

4.1.2 Feature 2: Granule Size Balance

In Section 2.1, we mentioned that an MP3 stream consists of a sequence of frames.
Again, two granules share a frame of fixed size. The quantisation loop adjusts
the size of the granules separately according to two criteria:
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1. Size: The granule must fit into the available space.

2. Quality: Signal noise shall remain imperceptible.

For some encoders, e. g., shine, we observed a slight bias for quality over size.
As the ‘hard’ space limit counts on both granules together, the first granules g

(i)
1

of all frames (1 ≤ i ≤ r) tend to get bigger than the second ones g
(i)
2 . Hence, we

measure the proportion of frames in the file where the length of the first granule
len(g1) dominates the second one len(g2):

%2 =
1

r

r∑
i=1

G(i), with

G(x) =

{
1 for len(g

(x)
1 ) > len(g

(x)
2 )

0 else.

Again, we define a mapping function, now for feature x2:

f2(m) =


0 for %2 < 0.50
1 for 0.50 ≤ %2 < 0.55
2 for 0.55 ≤ %2 < 0.70
3 else.

4.1.3 Feature 3: Reservoir Usage Ramp

The next feature makes use of characteristics of the reservoir mechanism. We
found that the abruptness of the rise in reservoir usage between silent and dy-
namic parts in the audio stream differs between some encoders. Other encoders
even do not use the reservoir at all. As the vast majority of audio files start with
a tiny silence, we derive the feature x3 from the amount of bytes shared between
the first and the second frame v(1,2):

f3(m) =


0 for v(i,i+1) = 0 ∀ i: 1 ≤ i < r
1 for v(1,2) > 300
2 else.

The function f3(m) is zero if the reservoir is not used in the whole file. The values
1 and 2 identify hard and soft reservoir usage, respectively.

4.1.4 Feature 4: Entropy of Big Values

The last feature in this category is less theoretically based and our evaluations
show that it has little impact on the classification result, except for a better
separation between two versions of the Xing encoder, namely xing98 and xing3.
However, we report it for the sake of completeness. We observed that xing3 uses
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Figure 3: Comparison of size control in stereo files encoded with xing3 and
xing98

a different size control mechanism for the second block of every granule of stereo
files. The differences are clearly visible in the histogram of lengths of big value
MDCT coefficients (see Figure 3). Following the ISO/MPEG 1 Audio Layer-3
terminology [14], big values are the partition of spectral coefficients with absolute
values greater than 1. This partition holds the most energy of the transformed
audio signal and thus the average number of big values is a valid indicator for the
extent of size reduction in the quantisation loop. To derive a continuous feature
from the different spread of histogram values in the stereo channel, we measure
the entropy from the histogram with the approximation given in [19]:

H ≈ −
dmax∑
j=1

dj log dj + log ∆x,

with dj denoting the density of occurrences in the j-th bin and ∆x as bin size.
Since ∆x is constant for all encoders, we use a simplified function to calculate
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feature x4:

f4(m) = −
60∑

j=1

dj log dj

Note that in contrast to previous features, f4(m) is a continuous feature that is
modelled by the classifier as a normal distributed random variable with mean
µ

(4)
i and standard deviation σ

(4)
i for the i-th encoder ei. However, as this feature

evaluates the characteristics of the second channel in stereo data, it is not ap-
plicable to mono files; hence, we cannot discriminate between xing3 and xing98

for mono files.

4.2 Model Decision

The psycho-acoustic model is a second source for distinguishing features. Differ-
ences in the computation of control parameters or modifications in the choice of
threshold values lead to typical marginal distributions of measurable parameters.

4.2.1 Feature 5: Preflag Ratio

The binary value preflag causes an additional amplification of high frequencies
and is individually set for each compressed block bi (1 ≤ i ≤ q, with q as number
of blocks in a file). Concerning the treatment of this parameter, the ISO/MPEG 1
Audio Layer-3 standard explicitly leaves latitude:

“The condition to switch on the preemphasis is up to the imple-
mentation.” [14, p. 110]

To derive an operable feature we calculate the proportion of blocks with preflag
set

%5 =
1

q

q∑
i=1

preflag(bi)

and map it into disjoint regions for the symbolic feature x5:
6

f5(m) =



0 for %5 = 0.00
1 for 0.00 < %5 ≤ 0.01
2 for 0.01 < %5 ≤ 0.05
3 for 0.05 < %5 ≤ 0.10
4 for 0.10 < %5 ≤ 0.21
5 for 0.21 < %5 ≤ 0.35
6 for 0.35 < %5 ≤ 0.62
7 for 0.62 < %5 ≤ 0.77
8 else.

6Our experiments show that the symbolic interpretation of x5 leads to better classification
results than a treatment as continuous feature with assumed normal distribution.
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4.2.2 Feature 6: Block Type Transitions

The MP3 audio format offers different block types, which allow an optimal trade-
off for sections requiring higher time resolution at the cost of frequency resolution
and vice versa. The majority of blocks are encoded with block type 0, the long
block with lower time and higher frequency resolution. Block type 2 defines a
short block, which offers less coefficients to be stored for three different points
in time. Two more block types are specified to perform smooth shifts between
the above mentioned types. Hence, the standard defines a graph of valid block
transitions between two adjacent blocks bi and bi+1, as shown in Figure 4.

3

0

1

2

Figure 4: Valid MP3 block type transitions

An evaluation of block type transitions of MP3 files from different encoders
uncovers two interesting details: First, some encoders (shine, all xing*) do not
use short blocks at all and thus always encode with block type 0. Second, other
encoders (lame, gogo, and plugger) include specific “illegal” transitions, mainly
at the beginning of a file. As these transitions are rarely observable from other
encoders, they identify the encoder reliably. Hence, we construct the extraction
function for feature x6 as follows:7

f6(m) =



0 for type(bi) = 0 ∀ i: 1 ≤ i ≤ q (shine, xing*)
1 for type(b1) = 0 ∧ type(b2) = 2 (lame)
2 for type(b1) = 2 ∧ type(b2) = 3 (gogo)
3 for |{bi|type(bi) = 2}| = |{bi|type(bi) = 3}| = 1 (plugger)
4 else.

We have no other explication for these strange transitions than assuming that
they are intended to leave a kind of encoder fingerprint in the output data. It is
up to a deeper analysis of these particularities in the source code to reveal further
evidence.

7For simplicity we give the relations for mono files. Stereo files work similar if blocks are
evaluated in pairs. The given definition is not disjoint, hence the values are assigned by the
first matching condition.
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4.3 Capability Usage

The third category of features exploits the fact that some encoders do not im-
plement all functions specified in the MP3 standard. We call this category capa-
bility usage and clearly separate these capabilities from surface parameters, such
as header flags, because the latter can easily be changed without touching the
compressed data.

4.3.1 Feature 7: SCFSI Usage

The Scale Factor Selection Information (SCFSI) is a parameter that allows an
encoder to reuse scale factors for subsequent parts of the stream if they do not
change over time. However, this compression method is only used by few en-
coders, namely lame, gogo, and xingac21 (“AudioCatalyst”). We define a fea-
ture x7 which reflects the use of SCFSI:

f7(m) =

{
0 for scfsi(bi) = 0 ∀ i: 1 ≤ i ≤ q
1 else.

4.3.2 Feature 8: Frame Length Alignment

Although MP3 frames have a fixed length, the amount of information used to
describe the respective audio signal may vary. We refer to this quantity as effective
frame length leneff(i). According to the MP3 standard, the effective frame length
has no constraints to match a multiple of bytes, words or quad-words. However,
we observed that some encoders (8hz-mp3, bladeenc, m3ec, plugger, shine,
soloh) adjust all effective frame lengths to byte boundaries, while others do not.
We use this characteristics as feature x8:

f8(m) =

{
0 for leneff(i) = 0 mod 8 ∀ i: 1 ≤ i ≤ r
1 else.

4.3.3 Feature 9: Huffman Table Selection

After the quantisation, the MDCT coefficients are further compressed by a Huff-
man style entropy coder. In contrast to the method proposed by Huffman [10],
the tables are not computed from the marginal symbol distribution. In order to
avoid the transmission of marginal distributions or table data, the developers of
MP3 standardised a set of 28 pre-defined Huffman tables that were empirically
optimised for the most probable cases in audio compression. In the very rare case
of longer code words an escape mechanism allows storage of uncompressed values.
An MP3 encoder chooses the most suitable table separately and independently
for each of the three regions of the big value MDCT coefficients. As there is no
efficient method to perform an optimal table selection, some encoders increase
performance by using heuristics to quickly select a suitable table, rather than the



4 DESCRIPTION OF FEATURES 23

optimal one. From a comparison of table usage frequencies, we found two note-
worthy characteristics: First, all Xing encoders seem to avoid strictly using table
number 0 for region 2.8 Second, only a few encoders (m3ec, mp3enc31, uzura)
use table 23 for the regions 1 and 2. We exploit these observations as additional
information for our classification:

f9(m) =


0 for table2(bi) 6= 1 ∀ i: 1 ≤ i ≤ q
1 for ∃(bi, j): tablej(bi) = 23,

1 ≤ i ≤ q, j = 1, 2
2 else.

Also, shine uses only a subset of the defined tables. However, as we can already
identify this rarely used encoder with several other features, we refrain from
adjusting this feature for the detection of shine.

4.4 Miscellaneous

4.4.1 Feature 10: Stuffing Byte Values

Since our last feature does not fit in any of the above categories, we decided to
explain it separately. Independent from whether the reservoir mechanism is used
or not, there may be a couple of bytes unused and filled up to meet the fixed
frame length. These so-called stuffing bits can be set to any arbitrary values. For
a closer examination of these values, we composed histograms of the byte values
in the stuffing areas. While most encoders set all stuffing bits to zero, we still
found some exceptions and mapped them into a symbolic feature x10:

f10(m) =



0 for stuffing with zeros
1 for no stuffing at all
2 for stuffing with 0x55 or 0xaa
3 for stuffing with “GOGO” (0x47 and 0x4f)
4 else.

4.4.2 Concluding Remarks

The enumeration of features in this section is a subset of particularities we took
into account and from which we selected the most promising ones. The selection
is far comprehensive, so it is still feasible to find further differentiating features.
Such features may be necessary to reliably separate new encoders, or encoders
that were not included in our initial analysis.

8According to the standard, we count the regions from zero.
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5 Experimental Results

For our experimental work, we used the R Statistical Framework [12, 23] and
implemented an extension for statistical analyses of MP3 files on the basis of the
open source MP3 player mpg123 [9]. All results are based on an MP3 database of
about 2,400 files encoded with 20 different encoders (cf. Table 5 in the Appendix
A.1). The audio data was selected from different sources to make the measure-
ments independent from specific types of music or speech. We included tracks
from a re-mastered CD of Grammy Nominees, from a compilation of Blues Broth-
ers (including some live recordings), further piano music by Chopin, as well as
Sound Quality Assessment Material (SQAM) files with speech and instrumental
sounds. All source files were read from CD recordings and stored as PCM wave
files with 44.1 kHz, 16 bit, stereo.

If provided, we encoded every source audio with three constant bit rates
that we believe are the most widely used rates for MP3 files, namely 112 kbps,
128 kbps, and 192 kbps. Additional MP3 files with variable bit rates, with two
quality settings each, were generated by the encoders iTunes, lame, and xingac21.

5.1 Validity for Known Data

To measure the performance of our proposed method, we implemented a Näıve
Bayes Classifier (NBC) [4] for fixed feature vectors of both symbolic and con-
tinuous features. In the first experiment, we trained the classifier cT1 with a
training set T1 of about 2,400 cases. For each case, we extract a feature vector
f(mi) from a file encoded with a defined encoder ei and use these tuples to induce
classification parameters for cT1 . To evaluate the performance of cT1 we use the
same feature vectors, because S1 = T1, as input to the classifier and compare the
predicted encoders to the known true values. The results are shown in Table 6 in
the Appendix A.1. In this experiment we reach a hit rate of p(cT1 , T1) = 96.2 %.
As a measure of confidence, we calculate the average a-posteriori probability over
the predicted encoders P̄max = 96.1 %. The classifier calculates the a-posteriori
probability maxi P (ei|f(m)) for each file on the basis of the feature vector.

Table 4 summarises the features proposed in Section 4. We use a jack-knife
method to empirically evaluate the importance of each feature for the classifica-
tion result. Therefore the training and classification procedure is repeated several
times, while excluding individual features one by one. The resulting increase of
misses in the classification table is a measure for the importance of a feature.
According to these values, the effective bit rate seems to be the most important
feature, followed by the method of reservoir usage.

A closer look at the results shows that the main sources for classification er-
rors occur between tightly related encoding engines, such as the DOS and UNIX
versions of Fraunhofer’s l3enc, and between two subsequent versions of Xing en-
coders (xing3 and xing99). Also, soloh produces false classifications as 8hz-mp3,
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especially for source files from the Blues Brothers CD. To explore these misclassi-
fications, we debugged the soloh binary and found references to an early version
of the 8hz-mp3 encoder. Hence, the similarity in statistical features may reveal
insights about the “intellectual origin” of certain encoders.

To support our results and reduce the risk of tautological finding, we repeat
the experiment with a split-half method. We trained the classifier cT2 with a
sub sample T2 of the first training set T1. All other elements from T1 are used
in the test set S2, so that T2 ∩ S2 = ∅. The results of this second experiment
are shown in Table 7 (in the Appendix A.1). We found an overall hit rate of
p(cT2 , S2) = 94.9 % and an average a-posteriori probability of 95.9 %. As both
quality measures differ only marginally from the first experiment (−1.3 and −0.2
percentage points, respectively), we conclude that the proposed method can also
reliably identify the encoders of unknown MP3 files.

5.2 Reliability for Unknown Data

We used classifier cT1 to determine the encoders of a random sample of 3,000
MP3 files drawn from different sources, for a total amount of more than 19,000
MP3 files. The overall average a-posteriori probability is 86.9 %. This is about 10
percentage points below the values for known data. We still consider this a good
value because we are aware that our training set certainly does not include all
available encoders. In addition, some well separable encoders in our assembled
test database, such as uzura and shine, have not been identified in the mass of
unknown files.

Figure 5 shows the distribution of a-posteriori probabilities for known and
unkown test data.9 The average a-posteriori probability for the most frequent
encoders is shown separately in Table 3.

Encoders e∗ not included in the training procedure may lead to misclassifica-
tions in either of two ways: If the feature vector f(m∗) is similar to one of the
trained encoders then we face a misclassification without noticing it. In this case,
the classifier reports a high a-posteriori probability, also interpreted as confidence
measure, and the known features are “blind” towards the differences between the
two encoders. To overcome this problem, one has to search for new features be-
tween the existing and the new encoders. In the second case, the feature vector
f(m∗) is dissimilar from the typical values of the trained encoders. In this case,
the classifier reports a low a-posteriori probability signifying the difficulties in as-
signing the actual feature vector to one of the trained classes. This case is more
favourable because the classification problem is identified. The new encoder can
be added to the classifier by retraining its parameters with an extended set.

9The latter has been reduced to bit rates between 112 kbps and 192 kbps, keeping 2912 files.
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Figure 5: Comparison of classification confidence between self generated test data
(left) and data collected in the wild (right).

5.3 Application for Steganalysis

To demonstrate the advances in steganalysis due to preclassification, we assem-
bled a test set of about 500 pristine MP3 files from different encoders together
with 369 steganograms from MP3stego [22]. If we run the attack against MP3stego
[26] directly on the test set, we clearly identify all 369 steganograms but face
an additional 377 false positives (75.4 %). Using the proposed method as pre-
classifier to filter all files from other encoders but 8hz-mp3 removes all false
alarms, while still 312 steganograms are reliably detected. The miss rate of
15 % can further be reduced by using a specially trained classifier for this pur-
pose. Only in combination with source classification does the detection method
have sufficient discriminative power to be suitable for a large scale search for
steganograms in MP3 files.
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Table 3: A-posteriori probabilities for frequently identified encoders

Confidence Pmax(e|x)

Rank Encoder Share µ σ n

1. fhgprod 17.3% 0.87 0.14 381

2. xingac21 11.6% 0.99 0.04 256

3. l3enc272 10.7% 0.95 0.08 235

4. soundjam 10.0% 0.97 0.11 220

5. bladeenc 9.0% 0.83 0.16 198

6. mp3comp 8.8% 0.88 0.16 193

7. lamea 8.6% 0.56 0.11 190

aThe low confidence may be due to different versions of lame; our training data has been
encoded with the recent V 3.93.
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6 Discussion and Conclusion

In this report, a method is presented to determine the encoder of ISO/MPEG 1
Audio Layer-3 data on the basis of statistical features extracted from the data.
We explained a set of 10 features that were used with a Näıve Bayes Classifier
to discriminate between 20 different MP3 encoders. The results show, that the
proposed method is quite reliable for special purpose test data as well as for a
sample of arbitrary MP3 files. However, the proposed scheme is far from being
the ultimate solution and it needs further refinement for real world applications.

6.1 Limitations and Future Directions

The first obstacle is the relatively narrow range of supported bit rates. In order
to keep the test database operable, we decided to concentrate on the most widely
used bit rates. Moreover, we tried to keep the features independent from the
bit rate. This approach appears to have been effective, as we do not have any
problems when classifying variable bit rate (VBR) files despite never explicitly
designing a feature for VBR data. However, as some encoders change the stereo
model for different bit rates—especially for more extreme settings—further anal-
yses of the robustness of the features against bit rate changes may increase the
reliability of the classification.

As already stated, MP3 files support different stereo modes and most encoders
offer a variety of options to fine tune the encoding result. Since the test database
always uses the (most likely) default settings and the presented features do not
care about other encoding modes, sophisticated encoding parameters may cause
false classifications. Hence, the influence of stereo modes and other encoding
options is subject to further research.

In addition, some of the present features rely on file parameters (e. g., total
file size) or precisely evaluate the beginning of a track (e. g., the initial silence).
These features will fail if only fragments of a stream shall be classified.

Regarding the composition of encoders in the training set, we mainly cover
open source encoders and the most widely used encoders from Fraunhofer and
Xing. The versions we researched were not systematically selected. Even if we
are quite confident that additional software encoders can be added with moder-
ate effort, we still have not examined the characteristics of hardware encoders
which, for example, are used in portable digital audio recorders. The typical
optimisations that are necessary to implement the MP3 encoding algorithm in
DSP hardware might cause features of a different kind than those we exploit to
differentiate software encoders.

To complete the list of open research questions, we refer to possible interac-
tions between statistical features used for source classification and audio water-
marking algorithms.
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6.2 Transferability to Other Compression Formats

The results on MP3 files show that encoder detection is feasible and has useful
applications for steganalysis and related areas. Hence, it might be an interesting
question as to whether the approach can be generalised—certainly with adapted
features—to other data formats.

Obviously, the MP3 format is a good candidate for encoder detection for two
reasons: First, the popularity of the format, and thus the demand for encoders,
developed a market for a couple of parallel developments in the late 1990s. Sec-
ond, the inclusion of a psycho-acoustic model simplifies the task of feature discov-
ery, because it leverages small numerical differences in the signal decomposition
to measurable statistics, such as block type frequencies. From this point of view,
MPEG 2 audio or MPEG 4 video seem to be promising formats for similar re-
search. Other formats, for example the popular JPEG image compression scheme,
might be quite harder to classify. This format is less complicated—at least in
the way it is used in the overwhelming majority of cases—and the Independent
JPEG Group (IJG) offers a standard implementation that is included in many
applications [13].

However, judging from our experience with MP3, we are confident that similar
methods can be constructed for most complex standards that leave latitude for
implementations. Assuming that latitude increases with complexity, we can even
be quite optimistic for future formats. Some discoveries we made, for example
the block type signature of open source encoders, back our optimism: As long
as programmers leave identifying traces by even violating the standards, whether
unintentional or motivated for one’s ego, classification will be feasible. Neverthe-
less, it is likely to always remain as an iterative analytical task, which is difficult
to automate.

6.3 Related Applications

Apart from the advances in steganalytic reliability, the proposed method may
have applications in two further ways. From an academic point of view, the in-
sights gained from the analysis of inter-encoder differences in MP3 files can be
used to construct new steganographic algorithms. If we know the parameters
that are treated differently by different encoders, we can consider them as inde-
terministic and modify them to carry steganographic messages. Also, the design
of watermarking algorithms, which are robust against MP3 compression, gains
from further knowledge about encoder differences.

Last but not least, a more practical application for tools derived from this
approach is digital forensics. Knowledge about the encoder of a suspicious file
may lead to inferences about a possible creator. However, we must note that it is
still possible to fool any of the presented features, at least if some effort is spent.
The output of any of these classifiers is always a probabilistic guess and must not
be considered as outright proof.
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A Appendix

A.1 Supplementary Tables

Table 4: Overview of features used for classification
No. Description Levels Importancea

Size control features

x1 Effective bit rate ratio 4 8.35

x2 Granule size balance 4 0.08

x3 Reservoir usage ramp 3 5.01

x4 Entropy of big values cont. 2.15

Model decision features

x5 Preflag ratio 9 1.73

x6 Block type transitions 5 1.56

Capability usage features

x7 SCFSI usage 2 0.50

x8 Frame length alignment 2 0.92

x9 Huffman table selection 3 0.63

Miscellaneous features

x10 Stuffing byte values 5 0.88

aThe importance is measured with a jack-knife method: The column shows the additional
overall classification error in percentage points if the feature is left out. Hence, higher values
indicate higher importance of a feature.
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Table 5: List of Analysed MP3 Encoders

Mnemonic Name Publisher Version Year

8hz-mp3 8HZ-MP3 Encoder 8Hz Productions 02b 1998

bladeenc BladeEnc Tord Jansson 0.94.2 2001

fastenc FastEnc Fraunhofer IIS 1.02 2000

fhgprod Fraunhofer MP3 Producer Opticom 2.1 1998

gogo gogo301 petit Herumi and Pen 3.01 2001

iTunes Apple iTunes Apple Computer Inc. 4.1-52 2003

l3enc272 l3enc (Linux) Fraunhofer IIS 2.72 1997

l3encdos l3enc (MS-DOS) Fraunhofer IIS 2.60 1996

lame LAME Ain’t an MP3 Encoder Mike Cheng et al. 3.93 2003

m3ec M3E Command Line Version N/A 0.98b 2000

mp3comp MP3 Compressor MP3hC 0.9f 1997

mp3enc31 mp3enc (Demo) Fraunhofer IIS 3.1 1998

plugger Plugger Alberto Demichelis 0.4 1998

shine Shine Gabriel Bouvigne 0.1.4 2001

soloh SoloH MPEG Encoder N/A 0.07a 1998

soundjam SoundJam (Macintosh) Casady and Greene 2.5.1 2000

uzura Uzura 3 N/A (Fortran code) 1.0 2002

xing3 Xing MP3 Encoder Xing Technology Corp. 3.0-32 1997

xing98 Xing MP3 Encoder (x3enc) Xing Technology Corp. 1.02 1998

xingac21 AudioCatalyst Xing Technology Corp. 2.10 1999

Note: All trademarks are the property of their respective owners.
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A.2 Sample Session

This section shows how the analytical process under R can be handled and
presents an example for encoder classification. To follow the session the following
software is required:

1. R Statistical Framework, free download under http://www.r-project.org

2. The mp3.zip (Windows binary) or mp3.tar.gz (Unix source) package de-
veloped for CHAMP3

3. The feature extraction and classification code (file name: champ3.R)

4. A training set of feature vectors (file name: feature.list.RData)

5. Sample MP3 files from recommended encoders

After R is successfully set up, the CHAMP3 import library has to be installed
into the R framework. On windows, start the R GUI environment and select
“Install package(s) from local zip file . . . ” in the “Packages” menu. Then choose
the location of mp3.zip and confirm. On Unix systems, this is accomplished by
the shell command line

bash# R CMD INSTALL mp3

where the package mp3.tar.gz has to be in the working directory. Note, that
super-user privileges may be required for this step.

Now switch into the R command line environment and call the library with

> library(mp3)

If everything is loaded correctly, you get the following output:

MP3 import library for R (based on mpglib)

(c) 2003-04 Technische Universität Dresden

URL: http://www.inf.tu-dresden.de/champ3

-------------------------------------------------

The development of this package was supported by

the Air Force Office of Scientific Research under

the research grant number FA8655-03-1-3A46.

-------------------------------------------------

To load an MP3 file and store it into an R object named m, type:

> m <- load.mp3("lame_01.mp3")

Start decoding ... decoding successful.

http://www.r-project.org
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A help page explaining more details of the parameters of load.mp3 is available
by

> ?load.mp3

To display the structure of the MP3 object, just enter

> m

List of 6

$ filename : chr "lame_01.mp3"

$ length : int -1

$ id3.length: int 0

$ aid.length: int 0

$ junk.bytes: int 0

$ stuff.hist: int [1:255] 247 1 1 1 1 1 0 1 0 0 ...

‘data.frame’: 10268 obs. of 8 variables:

$ length : int 288 288 288 288 288 288 288 288 288 288 ...

$ size : int 417 417 418 418 418 418 418 418 418 418 ...

$ header : int -290716 -290716 -290236 -290236 -290236 -290236 ...

$ bitrate : int 128 128 128 128 128 128 128 128 128 128 ...

$ freq : int 44100 44100 44100 44100 44100 44100 44100 44100 ...

$ junk.bytes: int 0 0 0 0 0 0 0 0 0 0 ...

$ backstep : int 0 0 381 511 511 511 511 511 511 511 ...

$ error : logi FALSE FALSE FALSE FALSE FALSE FALSE FALSE ...

‘data.frame’: 41072 obs. of 20 variables:

$ frame.parent : int 1 1 1 1 2 2 2 2 3 3 ...

$ scfsi : int -1 -1 0 0 -1 -1 0 0 -1 -1 ...

$ part23.length : int 0 0 0 0 0 0 0 0 0 0 ...

$ big.values : int 0 0 0 0 0 0 0 0 0 0 ...

$ stereo : int 0 1 0 3 0 5 0 7 0 9 ...

$ gain.0 : num 1 1 NA 1 1 1 1 1 1 1 ...

$ gain.1 : num 1 1 1 1 1 1 1 1 1 1 ...

$ gain.2 : num 1 1 1 1 1 1 1 1 1 1 ...

$ gain.pow2 : num 1.11e-16 1.11e-16 1.11e-16 1.11e-16 7.07e-01 ...

$ table.0 : int 0 0 0 0 0 0 0 0 0 0 ...

$ table.1 : int 0 0 0 0 0 0 0 0 0 0 ...

$ table.2 : int 0 0 0 0 0 0 0 0 0 0 ...

$ table.count1 : int 0 0 0 0 0 0 0 0 0 0 ...

$ region.1 : int 2 2 2 2 18 18 18 18 2 2 ...

$ region.2 : int 4 4 4 4 288 288 288 288 4 4 ...

$ block.type : int 0 0 0 0 2 2 3 3 0 0 ...

$ mixed.flag : int 0 0 0 0 0 0 0 0 0 0 ...

$ compress.scale: int 0 0 0 0 0 0 0 0 0 0 ...

$ scale : int 0 0 0 0 0 0 0 0 0 0 ...
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$ preflag : int 0 0 0 0 0 0 0 0 0 0 ...

Single elements of this structure can be accessed by name. For example, to
calculate the mean effective frame length in bits, enter

> mean(m$frames$length)

[1] 3317.785

Obviously, the whole set of statistical functions in R can easily be applied to MP3
data. To extract a feature vector, first load the CHAMP3 analysis functions into
the workspace

> source("champ3.R")

and then use the features function on m:

> features(m)

ENC F1 F2 F3

"unknown" "bps_low" "gran_bias_3" "back_soft"

F4 F5 F6 F7

"3.32592000290358" "pre_2" "block_lame" "scfsi_yes"

F8 F9 F10

"bit" "default" "stuff_alt"

The way the features are extracted and the meaning of the symbolic values are
explained below in Section 4. To assemble a training set, one would have to create
a file list as input to the function extract.features. However, to facilitate
this time-consuming step, we provide a pre-extracted feature list from our test
database. The following command loads the feature list into the workspace:

> load("feature.list.RData")

Check the structure of feature.list with the function str:

> str(feature.list)

‘data.frame’: 2371 obs. of 11 variables:

$ ENC: Factor w/ 20 levels "8hz-mp3","blade..",..: 1 1 1 1 1 1 1 ...

..- attr(*, "names")= chr "1" "2" "3" "4" ...

$ F1 : Factor w/ 4 levels "bps_0","bps_1",..: 3 3 3 3 3 3 3 3 3 3 ...

..- attr(*, "names")= chr "1" "2" "3" "4" ...

$ F2 : Factor w/ 4 levels "gran_bias_1",..: 2 2 2 2 2 2 2 2 2 2 ...

..- attr(*, "names")= chr "1" "2" "3" "4" ...

$ F3 : Factor w/ 3 levels "back_hard","bac..",..: 3 3 3 3 3 3 3 3 ...

..- attr(*, "names")= chr "1" "2" "3" "4" ...

$ F4 : num 3.53 3.53 3.56 3.63 3.56 ...

$ F5 : Factor w/ 9 levels "pre_1","pre_2",..: 9 8 9 9 8 9 9 9 9 9 ...
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..- attr(*, "names")= chr "1" "2" "3" "4" ...

$ F6 : Factor w/ 5 levels "block_gogo","bl..",..: 5 5 5 5 5 5 5 5 ...

..- attr(*, "names")= chr "1" "2" "3" "4" ...

$ F7 : Factor w/ 2 levels "scfsi_no","scfs..": 1 1 1 1 1 1 1 1 1 1 ...

..- attr(*, "names")= chr "1" "2" "3" "4" ...

$ F8 : Factor w/ 2 levels "bit","byte": 2 2 2 2 2 2 2 2 2 2 ...

..- attr(*, "names")= chr "1" "2" "3" "4" ...

$ F9 : Factor w/ 3 levels "default","no-ta..",..: 1 2 1 1 1 1 1 1 1 2 ...

..- attr(*, "names")= chr "1" "2" "3" "4" ...

$ F10: Factor w/ 5 levels "stuff_alt","stu..",..: 1 3 3 1 1 3 3 1 5 1 ...

..- attr(*, "names")= chr "1" "2" "3" "4" ...

To induce a classifier from the training set, use the nbc (Näıve Bayes Classi-
fier) function. As the part in the command line indicates, the encoder index ENC

(ei in mathematical notation) shall be predicted by all other components of the
data frame feature.list.

classifier <- nbc(ENC~F1+F2+F3+F4+F5+F6+F7+F8+F9+F10,feature.list)

—or, much more briefly—

classifier <- nbc(ENC~.,feature.list)

The function predict.mp3info (short cut: predict) can be used to determine
the most probable encoder of m. To access the first hit, type

> predict(m,classifier)$ENC[1]

[1] "lame"

Use predict.files to conveniently access the encoder classification for a given
file name, or a list of names. The output of predict.files displays a ranking
of the three most probable encoders together with the respective a-posteriori
probabilities.

> predict.files("mp3/lame/grammynom98/audio_01.mp3",classifier)

[1] "mp3/lame/grammynom98/audio_01.mp3"

Start decoding ... decoding successful.

rank ENC p.value bitrate

1 1 lame 1.000000e-00 128

2 2 gogo 5.162796e-10 128

3 3 xingac21 1.114803e-12 128

The source code champ3.R is also documented and contains further hints on the
usage of the provided commands. It also includes an interface for a JSP-based
web application for MP3 file analysis, which is online under http://www.inf.

tu-dresden.de/champ3.

http://www.inf.tu-dresden.de/champ3
http://www.inf.tu-dresden.de/champ3
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